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J. Phya A Math. Gen. 25 (1992) 3015-3037. Plinted in the UK 

Fluctuations of Casimir forces on finite objects: 
I. Spheres and hemispheres 

Claudia Eberlein 
School of Mathematical and Physical Sciences, University of Sussa, Brighton BNl 9QH, 
UK 

Abstract. The mean-square force that msult from the xm-point fluctuations of quantized 
fields are calculated when acting on spheres and hemispheres of variable Sizes. For the 
Maxwell field the boundary mnditions of a perfectly mnducling surface are imposed, 
the Sfalar field i investigated for Neumann and Dilichlet boundary mnditions. The 
force averaged wer a finite time T; m a l l  and large objects are distinguished on lhe 
s g i e  ai cT. The resuits iar the sphere and lhe hemisphere are mmpared mth inme 
for a piston that is embedded in an infinite plane. A ma l l  hemisphere and a ma l l  
piston are found to have fluctuations of the Same order of magnitude, while on a mal l  
sphere lhe fluctuations are by hvo orders of magnitude smaller because of correlations 
of flunuations on the WO sides of the sphere. Large spheres are shown to fit into the 
picture of large objecu being mmposed of many patches, each with the fluctuations 
impinging as on a large piston. 

1. Introduction and outline 

While, for a rather long time, Casimir forces on perfectly conducting surfaces (Casimir 
1948) used to be discussed without referring to the details of their fluctuating nature, 
the fluctuations themselves recently came into consideration (Barton 1991a). Their 
investigation by means of zero-temperature quantum field theory aims to disclose 
their basic features as well as to give some estimates of their order of magnitude 
under conditions close to those in experiments. 

In contrast to the work previously done by Barton (19!31a, b) where, for the 
purpose of exploring general properties of fluctuations of Casimir forces, almost 
exclusively a piston embedded in an infinite conducting plane is considered, the 
present and tde following paper (Eberlein 1992) centre & ihe investigation of these 
fluctuations on objects of finite extent, especially spheres, hemispheres, and spheroids. 
These will be compared with the calculations for an embedded piston, captivating in 
their simplicity. However, an experiment necessarily involves a finite apparatus, which 
gives rise to questions concerning the inRuence of this finiteness on the fluctuations. 
Therefore, this article continues and complements the preceding article by Barton 
(1991a) where the finiteness of a real experimental arrangement is taken into a m u n t  
only by averaging the Casimir stress Over a certain area out of an infinite plane. 
On a really finite object this, inevitably, would misestimate the fluctuations; most 
crucially due to the neglect of the correlations on the two sides of the object, which 
is unavoidable in that approach and must significantly overestimate the fluctuations. 

0305-4470/92/103015+23$~.50 @ 1992 IOP Publishing U d  3015 



3316 C Eberlein 

Since these errors increase by orders of magnitude for objects small compared to a 
typical correlation length, the investigation of fluctuations on isolated finite objects 
presented here proves essential for the understanding of the nature of the fluctuations 
and for reliable estimations of their magnitude. 

A suitable way for studying Casimir forces is by use of the stress tensor S which 
is given in term of the space-like components of the stress-energy tensor; Le. for 
the Maxwell field byt 

and for a scalar field by 

s.. = visvls + aij; [ (g), - (vs)2 ] 
I J  

in an orthonormal base. The appropriate boundary conditions on the surface of the 
object under consideration will simplify the above expressions later on. In any case 
the boundary conditions will be taken as time-independent, i.e. the object under 
consideration is assumed to be at rest and to gain only a negligible velocity during 
the measurement. 

The mean-square deviation of the stress is defined as usual 

AS2 = (0 I s 2  IO) - (0 I s I o y .  
After insertion of a complete set of two-particle eigenstates this reads 

where X abbreviates all quantum numbers necessary to specify the photon state, i.e. 
the wave vector and the polarization. 

situation suggests an averaging over a certain time T since measurements are not 
made instantaneously at a fixed time$. Therefore, time-averaging is introduced by 

Aij~ii  kiii Tteiagkilg tiis jtiejj S Cgei 2 fi&i s i i i f ~ e  aiea t k  ~@i~eiEa! 

where the function f(t) (with f ( t )  > 0, J-",dtf(t) = 1) is thought of as being 
significantly different from zero only in an interval 2T during a measurement. The 
actual shape of f ( t )  proves of minor importance (see Barton 1991a), so that a 
commitment further on to Lorentzian time-averaging 

t cos units are used; h = c = 1 is understood throughout if not explicitly indicated. All special functions 
are defined as ty Gradshteyn and Ryshik (1980, GR for short). 
t AS2 will turn out lo be divergent without time-averaging as one would expect f" the physics. 
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does not alter basic resultst. It is merely chosen for its technical handiness since the 
calculation will use its Fourier transform which is simply 

The idea of the calculation is to expand the Maxwell or scalar field, respectively, 
into its normal modes and to quantize it by introducing annihilation and creation 
operators as usual in the scheme of the canonical quantization. Inserting the normal- 
mode expansions into the formulae for the stress tensor S (given by (1.1) and (1.2), 
respectively) and noticing that the only non-vanishing matrixelements contributing in 
(1.3) are those where two creation operators are acting on the vacuum 

(X ,X '  I a:.:, I O )  = 1 (1.6) 

one can evaluate ASz by picking up the coefficients of U',.:, in the expression for S 
and integrating their squared modulus according to (1.3). 

This will be done for the Maxwell field in section '2, for the scalar field with 
Neumann boundary conditions in section 3 and with Dirichlet boundary conditions in 
section 4. For each of these fields the stress will be integrated over a sphere and a 
hemisphere to obtain the respective forces on these objects in a fixed direction along 
the z-axis. For the scalar fields the perpendicular forces on a piston embedded in an 
infinite plane are calculated in appendix A, since they are important for comparison 
and have not yet been given anywhere'else. Appendix B contributes some non-trivial 
technical details necessary for the reproducibility of the calculations. The main results 
are summarized in tables 1-3. 

The far more difficult case of a flat circular disk as a limiting case of a spheroid 
..;.I. .."":"L:"" a^ -̂"t-:̂ :c. :* + ~ " L l ~ , I  :" *La F-.,,,....:.." ..n..nr ,DLnrln:" ,-\ 
w1u1 *ar,u,,,,,g c u c " L L ' b ' L L y  U LaClUC" 111 " E r  'U"UW"LE, pap,, (""b"b"L "7Lp 

2. The Maxwell field 

On the surface of a perfectly conducting body the Maxwell field is required to fulfil the 
boundary conditions that the electric field tangential to the surface and the magnetic 
field perpendicular to it vanish. For a perfectly conducting sphere this means in 
spherical coordinates 

E ,  = E,  = B, = 0. (2.1) 
The stress tensor (1.1) simplilies to 

Accordingly, the zcomponent of the total force acting on a sphere of radius R is 
given hy 

(2.3) 

t For different time-averaging [unctions the msults for AS2 show the same power dependence on T, 
but have different numerical mefficicnts in fmnt. 
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21. The TE and TM normal modes 

The quantized electric and magnetic fields 

involve the normal modes A(k,u) of the vector potential in Coulomb gauge which 
are solutions of the Helmholtz equation 

P A  + k 2 r  = 0. (2.4) 

TI find such solutions it is mnvenient to proceed from the well-known scalar solution 

which is normalized to behave like eih.r/(2rr)3/2 for k r  --t ca. The phase 6, will 
be chosen to meet the required boundaly conditions on the surface of the sphere 
r = R. 

The vector field operators invariant under rotation are T, V, L = -iT x V and 
V x L (see Brink and Satchler 1961). Since T fails to commute with Vz, only the last 
"U** "p*,aL",a -U - _*" L" p.u*,aLL* ***L"I O".YLL"IIU ", 111- I I * I . I I . L " . L I  'yUaLL"'.. 

However, V@ is an irrotational fieldt, so that the solenoidal fieldsf and ( V x L ) @  
have to be employed for representations of the electromagnetic field. Choosing 
A(l) - L@ and A(2) - 1 / k V  x L@ and watching the correct normalization$ one 
obtains 

rh-nn -..---en- -n hn ..onrl +n n n m n r o t n  .SI.+_- rnl..ti-r. nf rhn Unlmhnlrr  nn..at:r\i 

ay;.(+) 
ae + sin 6, y, (kr)] Yf" ( k )  (-i) 

A(l)7 = 0 

t P.$ mesnt v x Vm d!. F!nl.e--ore, 2 *nix d .% v* wnu!d te h mn!r2diC!!o!! ~!! !  mc "omh 
gauge since V . VQ = - k 2 Q  # 0. 
$ lkis means V . La = 0 and V . (V x L)Q = 0 BS required in the Coulomb gauge. 
5 ?he Dormalhation is ked by equating the total energy of the electromagnetic k l d  Hem = 
(1/8n) J d 3 r ( P + B 2 )  and theaergyotasetdharmonicorillators = J d 3 b ( u / 2 ) ( a f a k +  
aka!) for each polarization. 



Fluctuations of Casimir forces on finite objects: I 3019 

x y;"*(k) y("(i.) 
sin 0 

+ sin 6,yc(kr)] Km*($)Ytm(i.). 

These are essentially the transverse electric (TE) and the transverse magnetic (TM) 
polarizations of the Hansen multipole fields (Biedenharn and L u c k  1989). They 
do not directly correspond to the standard hasis of vector spherical harmonics (see 
Newton 1982) but are convenient combinations of them. In terms of the vector fields 
(2.6) the E and B fields read (see also Ruppin 1982) 

(2.7) 

In order to obtain the amplitudes ATE#TM from (2.6) the phase 6, has to be re- 

determined hy 
placed by the phases 6, TE,TM which, according to the boundaly conditions (2.1), are 

Here and in the following a prime behind a bracket denotes a differentiation with 
respect to the argument of the Bessel function. (Not to be confused with primes that 
selve for distinguishing different variables.) 

Now the matrix elements relevant for calculating the mean-square deviation of 
Ihc force (2.3) can be read off the modes by use of (1.6), 
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1 
x- kk'R2 [ k R  c o s 6 T E j 1 ( k R )  + k R  sin 6 T E y t ( k R ) ] '  

x [ k ' R  c o ~ 6 ; ~ j ~ , ( k ' R )  + k ' R  sin 6fEy1,(k'R)]'Ytm(k)qy'(p) 

aytm*(+) a y ' * ( + ) ]  cos e Y i y + ) q y ' * ( + )  - as ae 

x [ c o s 6 T M j t ( k R )  + sin 6 T M y 1 ( k R ) ]  

x [ c 0 ~ 6 ; ~ j ~ , ( ! d R )  +s in  6FMy, , (k 'R) ]  Yt"'(k)Y1?'(k) 

1 
k R  

x - [ k R  cos 6 T E j , ( k R )  + k R  sin 6 T E y t ( k R ) ] '  

x [ c 0 ~ 6 ~ ~ j ~ , ( k ' R )  + s i n 6 ; M y t , ( k ' R ) ]  q"'(k)&?'(p) 

?he integration over the sphere then involves the angular integrals O , ,  3, and O3 
which are evaluated in appendix B.l (see (B.l), (B.2) and (B.3), respectively). Using 
the results (BS), (B.6) and (B.4) for the surface integration, and taking into account 
that time-averaging according to (1.4) simply changes the harmonic time dependence 
of the above matrix elements into multiplication with the Fourier transform of the 
time-averaging function (given in (1.5) for the Lorentzian average function employed 
here), one finds for the time-averaged matrix elements of the force F,: 

1 
X (m [ k R  C O S  6 T E j l ( k R )  + k R  sin 6 T E y l ( k R ) ] '  

x [ k ' R  C O S ~ ~ - ~ J ~ - ~ ( ~ ' R )  T E  ' + k 'R  sin 6 T ~ l y 1 - 1 ( k ' R ) ] '  

x Y [ y i ) q y ( P )  
1 TE , + - [ k R  cos 6 c - l ~ c - l ( k R )  + k R  sin 6T-Elyt-l(kR)]'  

x [ k ' R  c o s 6 F E j t ( k ' R )  + k ' R  sin 6 T E y 1 ( k ' R ) ] ' Y ; _ ~ ( i ) Y i " ( l ' ) }  

kk'R2 

( 2 t +  1 ) ( 2 t -  1) 
x ( - l )m+' (e2  - 1 )  
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(2.10) 

1 
k R  

x - [ k R  cos 6TEj , (kR)  + kR sin 6TEyl(kR)] '  

x [cos 6TMj,( k'R)  + sin 6TMy,( k'R)] 

x &m(iC)~>-m(k') (-l)m+lim. (2.11) 

The summation in (1.3) now means an integration Jd3k j' d3k' and a subsequent 
summation over polarizations. Having the summations E;=-, = 2t + 1 and 
E',=-, m2 = 1 / 3  ( ( e  + l ) (2e  + 1) already executed, one arrives at 

The dimensionless variable z replaces the former kR, and 

B dimensioni&s inserting for fie phases (2.8) and 
Wronskian of the spherical Bessel functions (Abramowitz and Stegun 1961 (AS for 
short in the following) 10.1.6) 

1 
j,(z)Yxz) - A(z)YL(z) = 2 
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one may rewrite the above integrals 

(2 .14)  

The denominator in the integrand of 'Dl(l) is easily recognized as a polynomial in 
inverse p e n  of (21) 

(see As 10.1.27). One would expect that the denominator occurring in 'D2, 'D3 and 
'D4 can be expressed by a similar polynomial. Indeed, using the moduli, A4 and N, 
of the Hankel functions and their derivatives, respectively, as defined in AS (9.2.19, 
20 and 22), one finds after a little algebra 

{[z&(z)1'12 + { [ ~ Y l ( ~ ) l ' 1 2  = & (aM;+l/2 + "A4f+I,,A4;+,,2 + W+,/,) 
which eventualiy yields (see 10.1.27, 9.230) 

( e  + k ) ! ( 2 k ) !  f 

( 2 1 ) - ~ ~ - ~ 2 [ k ( k +  1 ) ( 2 k + l ) - t ( l + l ) ] .  (2.19) - 
- l + C ( e - k ) ! k ! ( k + l ) !  k=O 

It has to be pointed out that the two polynomials, (2.18) and (2.19), are by no means 
approximations, but still exact expressions. In the scattering theory of electromagnetic 

angular momentum harrier (Biedenharn and b u c k  1989), and the quantity B, E 
[(zjt)'I2+ [ ( ~ y , ) ' ] ~ ,  occurring in the denominators of (2.15) to (2.17), can be shown 
to be closely related to it via 

... ~*d_"=jg .̂.̂  ̂ the qiiaiii@j i E 2 ( j 2  + .y/Zjj-? A;' k k,@Wii ;"re peaeiiabiiiv of the 

1 
I 2  2 

B, = [1 - e ( e +  "3 A, + -AY. 

However, although the polynomials derived above seem to simplify the integrals 
(2.14) to (2.17) considerably, general analytic solutions for them can hardly be found. 
It is reasonable to investigate the two limiting cases where the typical duration of 
time-averaging T is much larger (or smaller) than the geometrical dimensions of the 
object under consideration, i.e. e.g. the radius R of the sphere. 

lengths) are averaged away; so this is a longwavelengths limit since the latter deliver 
the dominant contribution to the fluctuations. Conversely, for T (< R (A -+ 0 in 
(2.13)) the frequency cut-off 1 / T  is large; so this clearly is the short-wavelengths 
limit. 

For ~~ (A o5 in ji.i3jj moden \Niiii freq.uencies shoii .w~".e- 
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22. The small sphere (R < T) 
In the long-wavelengths limit, where X is very large, the exponentials e-A" impose a 
strong damping on all powers of I. Thus, by Watson's lemma, one derives, proceeding 
from (2.18) and (2.19), 

(2.20) 

(qt4 [ 1 +  0 ($)I (2.21) (2e + 3 ) ~  + i ) ( e  + 1)  [(e - 1)q2 
8 (2ey 'D2([) = 

'D4(Q = 4 
(2e+1)[(e-1)!12 (2ey (g ) z f+2  [1+o(g)] 

Inserted in (2.12) this gives in leading order 

("R2)2 35 R2 A E 2  - 
26"4~10 

23. The lnrge sphere (R > T) 
In the short-wavelengths limit the calculation of the leading term is less straightfor- 
ward. However, the problem is closely related to that of high-frequency scattering by 
white spheres (see Mott and Massey 1965, section IL6), so that one may get some 
inspiration about the methods to be used from there. 

Since 1 / X  tends to infinity now, the cut-off is very large, i.e. contributions from 
large values of I dominate in the integrals (2.14) to (2.17). Likewise the summation 
over e in (212) gets its dominant contributions now from high e. Employing Dehye's 
asymptotic expansions for Bessel functions with large values of the indices (AS 9.3.7, 
8, 15, 16) one can, after a few algebraic steps, rewrite 

1 1 

'D4 = d z e - A Y "  Z v ( m - - a r c s e c h z )  + ~ ~ l ~ d r e - ~ " '  me d 2 T  
where U e + 112 and r replaces z / v .  

In order to evaluate the leading term of (2.12) the summation Over l is turned 
into an Lntegrayion 
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Interchanging the z and the U integration (they are all convergent), i.e. performing 
the one over U first, leads to 

1 + p- 0 (A’/”) 

where it can be recognized that obviously values of z with z 2 e -t + are giving the 
leading contributions in the integrals. At first glance one might be a little surprised 
by the occurence of an expansion in one-third powers. This, however, is known as 
a peculiarity of high-frequency scattering by spheres and circular cylinders (see Wu 
1956), and is, mathematically speaking, a consequence of the uniform asymptotic 
expansions of the Bessel functions &anger’s formulae, Erdtlyi et a1 1953, 7.13.4.) 
where Bessel functions with indices *$ crop up. 

The double integrals to be evaluated as the coefficients of the leading power 1 / X 6  
can be quite aiclc, if not gone about in the right way. Even then it iS a rather tedious 
business, so that their evaluation is shifted to appendix B.2. With (B.7) to (B.lO) 
taken into account (2.25) gives the final result in the short-wavelengths limit 

(2.26) 

2.4. The normal stress on a sphere 

With the formalism already introduced in the preceding subsection the calculation 
of the mean normal stress (SvT), acting from outside on the surface of a perfectly 
conducting sphere, lies at hand. From (2.2) and (2.7) one gets, by simply picking up 
the coefficients of aka;, 
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and with (2.6) 

x [ c o s 6 T M j t ( k R )  + sin 6 T M y 1 ( k R ) I Z  

( [ k R  c o s 6 F E j 1 ( k R )  1 1 
e ( e + i ) F S  X 

+ k R  ~ i n 6 F ~ y ~ ( k R ) ] ' ) ~ }  . 

Of course the normal stress cannot depend on the position 1'. For the first term in 
the above equation this is indeed easily seen by recalling the sum rule for spherical 
harmonics (Brink and Satchler 1961, appendix iv) 

For tie second and the third term one writes 

1 I 

= ( L Y ; " ) ' ( L Y ; " ) = e ( e + l )  I;"y 
m=-1 m=-1 

The last step follows after decomposing L in L, ,  L- and L,  and taking into account 
their action on the Ys, Then 

x [cos 6TMj1(  k R )  + sin 6TMy,( k R ) ]  * 
-- k 2 R 2  ([IcR cos  6 T E j I ( k R )  + k R  sin 6 T E y 1 ( k R ) ] ' )  ] 1 2 

which is clearly divergent. Therefore a cut-off frequency R is introduced by a factor 
e - k l n ,  Since the cut-off is to be removed at the end of the calculation (i.e. R + 00) 

the Same arguments as for the evaluation of AF, m the short-wavelengths Limit 
apply. In the Same notation as before one finds, after a few lines, 

-2 . 
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Note that R-' replaces ZT, and therefore A = l / ( n R ) .  With the 2% approximated 
as above and the v integration performed first, the remaining (onedimensional) 
integration is trivial and entails 

a4 

7Fz 
(SJ = --. 

This is no surprise but merely a repetition of the result for the normal stress on a 
piston (Barton 1991a). Both are necessarily the Same since the leading order terms 
arise from volume contributions, and the surface- (and curvature-) dependent terms 
are of next-to-leading order n2 only (Balian and Duplantier 1977). However, as the 
present approach proves inconvenient for calculations beyond the leading order this 
is skipped here. 

2.5. The small hemirphere 

Next, the fluctuations on a small hemisphere, with the polar axis in z direction, are 
evaluated as this, compared with the result for the sphere, will give a clue about the 
"..."ILL- "L C V n I C I a L L Y L L I  V C L W r r l .  U L C  LW" D l U C I  Y l  (.,I "UJCCL. 

The matrix elements ( A ,  A' I S,, cos 0 I 0) are now to be integrated over the 
surface of a hemisphere only, Le. s do i dn2, = $" dB s,"" dypsin 8. Although, 
in principle the integrals 3, and 3, (see appenduc B.l) could, even for a hemi- 
sphere, be evaluated in terms of general formulae (see Shabde 1937 for integrals over 
products of two associated Legendre polynomials), this turns out to give rather un- 
pleasant infinite sumst. A much quicker way is to calculate the hemisphere-integrals 

3, and 3, for t and t' up to 2 by hand. Proceeding as before for the small 
sphere one finds 

infl..nnrn nf .-n--ale+&-s hnh..na- r h n  e . s n  -:An- n C  nn nhinot 

(2.27) AF,z [ 34 x 59 5 x 137R2 
2 1 6 = 4 T d  + 2 1 l n 4 T I O  + ($)I bR2)" 

t This can be understood immediately once one has noliced that the simple slmclure of the mults  (BS) 
and (B.6) for the sphere originates from the Selection rule for dipole matrix elements A t  = fl which, 
however, does not hold on a hemisphere. 
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3. The scalar field with Neumann boundary conditions 

3027 

A scalar field may be thought of as a representation of an acoustic field, Le. as the 
velocity potential U = -V+ in a fluid. Small vibrations of a non-viscous, compressible 
fluid are then governed by the wave equation. If these compressional waves are 
impinging on an impenetrable obstacle the boundary condition on its surface (having 
the normal vector fi) is fi . V+ = 0. On a sphere this means 

v,*=o. ( 3 4  

Then the stress-tensor components (1.2) read 

s,, = ; (a+/at)2 - f (V,+)2 - ; (V,+y 
(3.2) s,, = s,, = 0 .  

3.1. The normal modes 

Quantizing the scalar field according to 

uk +(k)e-iw' + U :  + * ( k ) e i w t )  (3.3) 

one quickly writes down the normal modes (see (2.5) apart from normalization): 

47r e-i6t i f  
V,$= -kc- [ c o s 6 , j ; ( k r )  + sin 6,y;(kr)] Ytm*(k)Y,"'(i) 

( 2 T ) 3 / 2  i.m &% 
(3.4) 
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On similar lines as before for the electromagnetic field the matrix element of the 
stress (3.2) jS found to be 

x [ c o ~ 6 ~ j ~ ( l c R ) + s i n 6 ~ y ~ ( l c R ) ] [ c o s 6 ~ , j ~ , ( k ' R )  

+ sin 6,, yt,( k 'R)]  &"'(k)Yt?'(k){ -ww'Ylm*(+) cos Svl;""(i) 

The integration of this matrix element over the sphere then employs the integral SI 
(see (B.2) and 03.6)) and the second term of the integral Q2 (see (B.1) and (B.5)) 
and leads, after Lorentzian time-averaging, squaring and subsequent summation over 
the phonon states as indicated in (1.3), to 

-2 l W  
AF,  =- C e [ P , ( t ) P , ( e -  1) + 2 ( P  - l)P,(e)P,(e- 1) 

1=1 
37rZR4 

with the Ps  being 

in the same dimensionless variables z = k R  and X = 2T/R as before. 

3.2. The small sphere ( R  << T )  
Applying again Watson's Lemma and taking into account the expansion of the spheri- 
cal Bessel functions for small arguments (AS 10.1.2, 3) one finds for the leading-order 
term 

("R2)2 5 x l l R Z  A T '  - 
3 x ~ 8 ~ 4 ~ 1 0  

(3.7) 

3.3. The large sphere ( R  >> T )  

As before for the 'Ds one uses Debye's asymptotic expansions to find an asymptotic 
expansion for the Ps in the limit of X - 0. It turns out that the expansion for P ,  
is equal to that for 'Dz already given above, and the same applies to the expansions 
for P, and 'D3, and to those for P3 and 'D4. Note that the coincidence of the leading 
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terms in the short-wavelengths expansions does not mean that the integrals equal 
each other. 

Tbming the summation over e in (3.6) into an integration and performing this 
integration lirst, one arrives, after a little algebra, along the same lines as before, and 
with the help of the integrals evaluated in appendix B.2, at 

( rR2) '  . 11 A E 2  - 
3 2  x 2 ~ ~ 4 ~ 2 ~ 6  

3.4. The small hemisphere 

For the evaluation of the fluctuations on a small hemisphere the integration of the 
matrix element ( k ,  k' 1 S,, cos 0 1 0) Over the hemisphere surface is again most 
quickly done by hand. One is led to 

which gives, by use of the large-A-asymptotics of the Ps, 

(3.9) 

4. The scalar field with Dirichlet boundary conditions 

Although there seems to be no immediate physical application of a scalar field with 
Dirichlet boundary conditions, i.e. with 

@ = O  

on the surface of the object under consideration, the investigation of this case will he 
briefly outlined here for its somewhat surprising results. 

The stress-tensor components (1.2) are now reduced to 
2 s,, = $(V,$) , 

so, = s,, = 0 .  

The normal modes are already given in (3.4); the different boundary conditions 
now entail 

The matrix element of the stress reads 

x [cos  6, j, ( k R )  + sin 6, y f  ( k R ) ]  
x [ c o s 6 , , j f , ( k ' R )  +sin  6,, y f , ( k ' R ) ] q m ( k ) q 7 " ( d ' )  

yfm*(i.)coseq$*(i). 
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For the surface integration one needs only the second term of the integral 32 (see 
(B.2) and (B.6)). Eventually it is found that 

where Di(!) & gven hy (2.14). 
Along the same lines as before one obtains for the small sphere (R a T) 

for the large sphere 

(4.3) 

and for the hemisphere 

5. Comparison and conclusions 

The results for the Maxwell field are summarized in table 1, those for the scalar field 
with Neumann and Dirichlet boundary conditions in tables 2 and 3, respectively. 

lhble t Tne mean square deviations AE2”/A2 (A = rrRZ or az, respenively) For the 
M w e l l  field. 

Sphere Hemisphere Piston? 

35Rz 3‘ x 59 3 - - 
218 a 4  T8 2’a4Ts a , R a c T  - 

2 6 ~ 4 ~ 1 0  

1.8 x 10-3- “ R z )  ( 7 . 5  x T8 10-4- ) (2.4 T’O 

1.3 x 10-3- 

tThse mulls are taken from the paper by Banon (1991b). 

Cnmparhg the $stoa 2nd the hemisphere With &e sphere one sees that the 
correlations of the fluctuations on the two sides of an object play a very important 
role for objects that are small on the scale of the time of averaging T;  the correlations 
decrease the fluctuations by two powers of T /  R. Judging from the Maxwell field and 
the scalar field with Neumann boundary conditions one would be inclined to regard 
piston and hemisphere as roughly the same with respect to the fluctuations, their 
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lgbk Z n e  mean square deviations A= /A2 ( A  = xR2 or a?. respectively) for the 
scalar field wilh Neumann toundary oonditians. 

Sphere Hemisphere Piston 

5 x 11R2 3* x 19 x 113 11 __ 
a , R < c T  3 x 2 n x 4 y 1 0  2'8 + T8 29 + T8 

2.3 x 10-4- 1") b . 6  x 10-4- T8 ) ( 2 . 2 x  10-4- TS 
l )  ( T'O 

1 1  1 1  
a, R > cT $ x (sphere) 

3 x 25x4 R2T6 

lgbk 3. ?he mean square dwiatians AC2;2/A2 ( A  = xRZ or a2, respeclively) lor the 
scalar field with Dilichlet boundary conditions. 

Sphere Hemisphere Piston 

1 - 1 1 
a' R a c T  25+R/T€ 2Qx4R4T4 2Brr4T8 

1.0 x 10-3- n R2 T6 ) (2.0x10-4- rrR'T' ) ( , . o x i o - 5 -  

1 x (sphere) 1 
a, R > CT 

different geometly bringing along only a numerical factor of around three; both seem 
to be an equally good model for a one-sided object. The peculiarity of the scalar field 
with Dirichlet boundary conditions, where this kind of interpretation goes wrong, will 
be discussed below. 

For objects large compared with the duration of time-averaging Tit seems plausi- 
ble that the fluctuations on differently shaped bodies differ only by numerical factors 
of order one since the correlation length is much smaller than the overall extent of the 
object and correlations between different sides are therefore of negligible influence. 

Furthermore, large bodies can be thought of as being composed of many patches 
which may be regarded as flat as long as the curvature of the surface under con- 
sideration stays reasonably small. Integrating over flat patches that are assumed to 
have the Same fluctuations impinging as there are on a piston, one finds that the 
fluctuations on a sphere are connected with those on a piston via 

A r 2 ( s p h e r e )  - _  4 A r 2 ( p i s t o n )  
TR2 - 3  a2 

which is indeed backed up by the results given in tables 1-3. That is why it is pointless 
to calculate the fluctuations on a large hemisphere from scratch; the result will, of 
course, be half of that for the sphere. Supporting the above statements with some 
mathematical rigour, however, requires a consideration of the correlation function of 
the stress (see Barton 1991b for that). 
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The comparison of the results for the different fields shows that the Maxwell field 
and the scalar field with Neumann boundary conditions are remarkably close. One 
might have expected a much larger difference between the results for the small sphere 
on account of the different structure of the normal modes, the scalar field admitting 
e = 0 contributions and the Maxwell field not. 

The results for the fluctuations of the scalar field with Duichlet boundary con- 
ditions on small objects seem not to fit into the picture. Hemisphere and piston 
have different dependence on T, most oddly the force fluctuations on a hemisphere 
are independent of its radius. About the last mentioned phenomenon, however, one 
should not rack one's brain too much since the small hemisphere was a made-up 
model for comparison with the piston, neither of them being realizable in practice 
because of their artificial one-sideness. Furthermore, one is reminded of the fact 
that the natural counterpart of the Maxwell field is the scalar field with Neumann 
boundary conditions, while the present type of investigation for Dirichlet boundary 
conditions has no immediate significance in physics. 

Of course, one will ask about fluctuations from inside too once one deals with hol- 
low objects. F k  small objects these fluctuations are exponentially small, i.e. propor- 
tional to e-4woT (for Lnrentzian time averaging) with wo being the lowest eigenmode 
admitted inside the cavity, as one can convince oneself quickly by performing the 
caicuiauon for a recianguiar box. For smaii cavities the fluctuations from inside are 
therefore negligible. For large objects the fluctuations from inside may be calculated 
in the same way as those from outside, by breaking up the surface into patches. 

Things become far more complicated for two objects close together, as, for in- 
stance, the set-up of the two parallel plates in the classic Casimir experiment. For 
this one might construct a model of a sphere that is cut into two hemispheres with 

were a closed cavity, i.e. whether the density of the modes lengthwise the slit at 
low frequencies brings about an exponential damping. Judging from scattering ex- 
periments in such open-ended cavities where strong resonances occur at frequencies 
that correspond to the length of the cavity, one would assume that the density of the 
modes is mainly governed by these resonances and shows a gap-like behaviour at low 
frequencies, which would make the fluctuations from inside negligible in comparison 
with those from outside. However, a mathematical back-up of this reasoning involves 
considerable additional effort and k beyond the scope of the present paper. 

Thinking about a direct experimental detection of the fluctuations of Casimk 
forces one conveniently employs some simple considerations proceeding from the 
uncertainty relation in order to get general limitations for the measurability. Since 
the Uncertainty in p i t i o n  must not reach the typical mrrelation length cT: for the 
model of an effectively immobile object staying valid, the uncertainty in momentum 
is at least h/cT.  The impulse acquired by the object during the measurement from 
the zero-point fluctuations of the field is measurable of course only if it exceeds this 
momentum uncertainty. 'Banslating all this into formulae (see Barton 1591b, appendix 
B, for the piston in the Maxwell field), one quickly realizes that, for the Maxwell field 
as well as for the scalar field with Neumann boundaly conditions, the fluctuations on 
small objects are excluded from being measurable. So, apart from numerical values 
being small or large measurability is limited, as a matter of principle, to large objects. 

a sma!! gap in 5eweeii. It is Eo: dea; ivhethei the s k  may be haiib!ed 23 if i: 
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Appendix A. Fluctuations of scalar fields on a piston 

AI. Neumann bounday conditions 

Let the boundaly plane be described by z = 0 in Cartesian coordinates. The scalar 
fieldt 

obviously fulfils the boundaly condition a$J/az = 0 on z = 0. According to (1.2) 
the stress-tensor component to be evaluated is 

s,, = 1 2 [(g)2- (g)2- (&)"I 
Its matrix element is found to be 

(-ww' + k,kk + k,kk) 1 2 - 
(k,k'  I S,, IO) = - ~ 

( 2 ~ ) 3  LZ 
( k l )  e-(w+u')T-l(l.ll+bil) 711 

where Lorentzian time averaging has been already applied. 
For a small piston (a << 7') averaging over its surface makes no further difference 

(Barton 1991a) since the time averaging over times long compared with the typical 
geometrical dimensions of the piston leaves only the long-wavelengths modes which 
are anyway coherent Over those short distances on the piston. Squaring the matrix 
element (kl) and integrating Over all modes gives 

and finally 

- 2 11 
AS,, = - 2grr47'a 

For a large piston (a >> T) the surface averaging over a square piston with side 
length a implies 

t The index 1 1  here and in the following marks two-dimensional vectom in the ( r ,  y) or (L,  k,) planes. 
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In the last step the formula sin(x/E)/(lrx)%(z) was used, since the side length 
a is large compared to the wavelength. Then one has 

In order to avoid a squared delta function, one factor of the squared integral was 
evaluated first; the second integral then gives 1, since the exponent of the integrand 
vanishes due to the delta function in front. 

Using this for surface averaging and squaring (A.1) one finds 

After substituting e and e' according to n2 = (e2 + kf)/kf and performing the kll 
integration (in polar coordinates) one obtains 

The integrals accuring here are already known from the calculations for the large 
spheres and given by (B.8) to (B.lO). So, the final result for the large piston is 

- 11 
3 x Z77r3a2T6 ' ASZz2 = 

A2 Dirichlef boundary conditions 

If the boundary condition $ ( z  = 0)  = 0 is imposed the scalar field may be expressed 
bY 

The boundaly condition reduces the stress-tensor to 

leading to the (time-averaged) matrix element 

For a small piston it is easily found that 

-2 1 
AS,, = - Z97r4Ta 

(A.4) 
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Along the same lines as before for Neumann boundaly conditions one gets for a large 
piston 

and by use of (B.7) 
-2 1 AS,, = 3 x Z7rr3a2T6 

Appendix B. Miscellanea 

81. Integration over the surface of a sphere 
The integrals to be evaluated are: 

Decomposing the angular momentum operator Z into its artesian components one 
easily recognizes that the above integrals may be expressed in terms of scalar products 
in the Hilbert space of the angular momentum eigenfunctions Ytm(i.), 

3 1 -  - (-iy'+* ( L Y ~ ~  I cos e I ZYC;"') 

3 3 -  -(-I)"+' (Y;" 1 iL, 1 ~ 7 " ) .  

33 = (-l)""im'61f,6m-m,. 03.4) 

The solution of the thud integral is trivial now, 

The integral g1 is solved by expressing the scalar product of the angular momentum 
operators in terms of the angular-momentum raising and lowering operators, L ,  and 
L - .  Their action on eigenstates of L is known; so it remains to evaluate the scalar 
product 
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Insertion of the appropriate Clebsch-Gordan coefficients (AS, table 27.9.2) then 
gives eventually 

I (E'  - m ) ( k '  + m) 
( 2 & ' + 1 ) ( 2 C - 1 )  + 6,,,-1(t"- 1 )  

B2. Two-dimensional integrals for the short-wavelengths limit 

The integral 

may be rewritten as 

where the substitutions z = cosh a, k = cosh p were made. Wlth the help of 
the standard addition formulae for hyperbolic functions (AS 4.5.38, 43) and after 
substituting p = (a + p ) / 2 ,  q = ( a  - p ) / 2 ,  one finds 

2 [$ cosh(2p) - $ cosh(2q)l 

cosh6 p cosh6 q 
= lm dpl: dq 

Now the integral factorizes and can be evaluated hy standard integrations. Eventually 
this leads to 

In precisely the same way the results for the other integrals are obtained; 
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